
Mid-exam Imperative Programming
Oct. 5 2020, 14:00-17:00h

• You can solve the problems in any order. Solutions must be submitted to the automated judgement
system Themis. For each problem, Themis will test ten different inputs, and check whether the outputs
are correct.

• Grading: you get one grade point for free. The remaining nine points are based solely on the judgment
given by Themis. The first problem is worth one grade point. The remaining four problems are worth
two grade points each, of which you score the full two points if you passed the complete test set of the
problem (i.e. 10 test cases), or one grade point if you passed at least 5 (out of 10) test cases.

• Inefficient programs may be rejected by Themis. In such cases, the error will be ’time limit exceeded’.
The time limit for each problem is two seconds.

• The number of submissions to Themis is unlimited. No points are subtracted for multiple submissions.

• There will be no assessment of programming style. However, accepted solutions are checked manually
for cheating: for example, precomputed answers will not be accepted, even though Themis accepts them.

• Note the hints that Themis gives when your program fails a test.

• Needless to say: you are not allowed to work together. If plagiarism is detected, both parties (supplier of
the code and the person that sends in copied code) will be excluded from any further participation in the
course.

• You are not allowed to use email, phones, tablets, calculators, etc. There is a calculator available on the
exam computers (see icon on the desktop). You are allowed to consult the ANSI C book and a dictionary.
You are not allowed to use a printed copy of the reader or the lecture slides, however they are available
digitally (as a pdf) in Themis. You are allowed to access your own submissions previously made to
Themis.

• For each problem, the first three test cases (input files) are available on Themis. These input files, and
the corresponding output files, are called 1.in, 2.in, 3.in, 1.out, 2.out and 3.out. These files
can be used to test whether the output of your program matches the requested layout, so that there can be
no misunderstanding about the layout and spaces in the output.

• If you fail to pass a problem for a specific test case, then you are advised not to lose much time on
debugging your program, and continue with another problem. In the last hour of the midterm, all
input files will be made visible in Themis (not the output files).



Problem 1: Palindromic Number

Write a program that reads from the input a small integer n, where 1 ≤ n < 10000. The output should be the
palindromic number that is obtained by appending the digits of n in reverse order to the number n.

For example, the number 123 gets appended with 321 resulting in the palindromic number 123321.

Example 1:
input:
123
output:
123321

Example 2:
input:
42
output:
4224

Example 3:
input:
1234
output:
12344321

Problem 2: Disarium Numbers

A positive integer is said to be a Disarium number when the sum of its digits raised to the power of their
respective positions is equal to the number itself. Here, the most significant digit (i.e. first non-zero digit) has
position 1.

For example, the number 598 is a Disarium number, because 51 + 92 + 83 = 5 + 81 + 512 = 598.
Write a program that reads from the input an int n (where n > 0), and outputs YES is n if a Disarium

number, and NO otherwise.

Example 1:
input:
1
output:
YES

Example 2:
input:
42
output:
NO

Example 3:
input:
598
output:
YES

Problem 3: Prime Gaps

Recall that a prime is an integer greater than 1 that has no positive divisors other than 1 and itself.
A prime gap is the difference between two successive prime numbers. For example, the number 4652353 is

prime, and 4652507 is the smallest prime greater than 4652353. Hence, the gap between the successive primes
4652353 and 4652507 is 154(= 4652507− 4652353).

Write a program that reads from the input an integer n (where 0 < n ≤ 150), and outputs the smallest
prime p and the successive prime q such that the gap q − p ≥ n. Also the gap size itself must be printed. The
output must be in the format given in the following examples.

Example 1:
input:
1
output:
3-2=1

Example 2:
input:
42
output:
15727-15683=44

Example 3:
input:
150
output:
4652507-4652353=154



Problem 4: Swapping Letters

The input of this problem is a line with the 26 capital letters of the alphabet in some order. The first letter is at
position 0, the second at position 1, and the last letter is at position 25. The following lines contain a series of
actions of the form swap x y, where x and y are integers denoting positions. Each of these actions denotes
the swapping of the letters at these positions. The series of actions is terminated by the special action stop.

The output of your program should be YES if, after applying the series of swaps, the letters are sorted in
alphabetical order, and NO otherwise.

Example 1:
input:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
swap 0 3
stop
output:
NO

Example 2:
input:
DBCAEFGHIJKLMNOPQRSTUVWXYZ
swap 0 3
stop
output:
YES

Example 3:
input:
SDVTLMQIUFANBJRKPHOWYEXGCZ
swap 3 19
swap 0 25
swap 17 23
stop
output:
NO



Problem 5: Connect Four

Connect Four (also known as Four in a Row) is a two-player game. One player plays with yellow colored
discs, and the other player plays with red colored discs. The player with the yellow discs starts the game. The
players take turns dropping discs into a seven-column, six-row grid. The pieces fall straight down, occupying
the lowest available space within the column. The objective of the game is to be the first to form a horizontal,
vertical, or diagonal line of four of one’s own discs. For example, in the following figure the player with the
red discs has won, because he has 4 discs in a diagonal (denoted by the green line).

We number the columns of the grid 0, 1, 2, .., 6, where column 0 is the left most column and column 6 is
the right most column. We can encode the moves of a game by a series of numbers, which are the columns in
which players placed a disc. The first number of this series is the starting move of the player with the yellow
discs. The series is terminated by the symbol ’#’. For example, the board configuration in the figure could be
reached by the following series of moves: 3,3,1,1,4,2,4,5,5,4,5,5#

Write a program that reads from the input a series of moves. The output of your program should be YELLOW
if the player with the yellow discs has won the game, RED if the player with the red discs has won the game, or
UNDECIDED otherwise. You may asume that the input contains a series of valid moves, so you do not have to
check for invalid moves.
Example 1:

input:
3,3,1,1,4,2,4,5,5,4,5,5#
output:
RED

Example 2:
input:
1,2,1,2,1,2,1#
output:
YELLOW

Example 3:
input:
3,3,1,1,4,2,4,5,5,4,5,6#
output:
UNDECIDED


